POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Tool Materials

Course

Field of study Year/Semester

Materials Engineering 3/6

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

First-cycle studies polish

Form of study Requirements

full-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

15 15

Tutorials Projects/seminars

Number of credit points

2

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

Dr inż. Wojciech Gęstwa

e-mail: wojciech.gestwa@put.poznan.pl

phone: 61 665 35 73

Faculty of Materials Engineering and Technical

Physics

Piotrowo St 3, 60-965 Poznań

Prerequisites

Knowledge: Knowledge of engineering materials and manufacturing technology.

Skills: Logical thinking associating image with description

Social competences: Understanding the need to learn and acquiring knowledge, systematic learning.

Course objective

Getting to know the classification, properties, selection, heat treatment, structure and production of tool materials.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

- 1. The student should know the types of tools. [K_W08]
- 2. The student should know the requirements for the properties of tool materials. [K_W09]

Skills

- 1. The student knows how to evaluate the tool wear mechanism. [K_U19]
- 2. The student is able to select material for a specific tool. [K U18]
- 3. The student is able to propose the heat treatment of the tool. [K U21]

Social competences

- 1. The student is able to work in a group. [K_K03]
- 2. The student is aware of the impact of the quality of tools on the production results. [K K02]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lectures:

A written form of credit consisting of three (3) to five (5) questions;

Credit based on the following evaluation criteria: dst $(3.0) \div dst + (3.5) \triangleright 50.1 \div 70\%$; db $(4.0) \div db + (4.5) \triangleright 70.1 \div 90\%$; very good $(5.0) \triangleright 90.1 \div 100\%$

Laboratory:

Assessment based on oral or written answers regarding the content of each laboratory exercise according to the instructions of the laboratory teacher.

In order to pass the laboratories, all exercises must be passed on the basis of a positive mark from the answer and a passed report.

Programme content

Lecture:

Tools - what is it? Material processing versus tools - general issues. Properties of tool materials. Classification of tool materials. Tool steels classification. The influence of alloying elements on the properties of steel. Designations, application, structures of steel and the accompanying heat treatment. Sintered tool steels, manufacturing technology. Carbide sinters. Surface treatment of tools. Tool ceramics. Super-hard tool materials.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Laboratory:

1. Heat treatment of tool steels. 2. Construction of modern cutting tools. 3. Assessment of the correctness of the structure of conventional tool steels. 4. Sintered tool materials. 5. Comparison of conventional and sintered tool steels.

Teaching methods

- 1. Lecture: multimedia presentation, presentation illustrated with examples given on the blackboard.
- 2. Laboratory exercises: practical exercises, discussion and preparation of the results in the form of a report, formulation of conclusions concerning the issues discussed during classes.

Bibliography

Basic

- 1. M. Kupczyk: Wytwarzanie i eksploatacja narzędzi skrawających z powłokami przeciwzużyciowymi, Wyd. PP, 2009
- 2. M. Wysiecki: Nowoczesne materiały narzędziowe?, WNT Warszawa 1997

Additional

- 1. L. Dobrzański i inni: Metaloznawstwo i obróbka cieplna materiałów narzędziowych, Wyd. Naukowo-Techniczne;1990
- 2. H.Leda: Współczesne materiały konstrukcyjne i narzędziowe; Wyd. Politechniki Poznańskiej; 1996

Breakdown of average student's workload

	Hours	ECTS
Total workload	57	2,0
Classes requiring direct contact with the teacher	32	1,0
Student's own work (literature studies, preparation for	25	1,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate